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Abstract. In this paper, spherical cavitated bifurcation problems are examined for incompressible hyper-elastic
materials and compressible hyper-elastic materials, respectively. For incompressible hyper-elastic materials, a
cavitated bifurcation equation that describes cavity formation and growth for a solid sphere, composed of a class
of transversely isotropic incompressible hyper-elastic materials, is obtained. Some qualitative properties of the
solutions of the cavitated bifurcation equation are discussed in the different regions of the plane partitioned by
material parameters indicating the degree of radial anisotropy in detail. It is shown that the cavitated bifurca-
tion equation is equivalent, by use of singularity theory, to a class of normal forms with single-sided constraint
conditions at the critical point. Stability and catastrophe of the solutions of the cavitated bifurcation equation
are discussed by using the minimal potential-energy principle. For compressible hyper-elastic materials, a group
of parameter-type solutions for the cavitated deformation for a solid sphere, composed of a class of isotropic
compressible hyper-elastic materials, is obtained. Stability of the solutions is also discussed.
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1. Introduction

In 1958, Gent and Lindley [1] discovered rubber cavitation in the laboratory for the first time.
Many similar phenomena have been observed since then (see [2–4]). Void formation, growth
and run-through of the adjacent cavity in solids have been of concern for a long time because
of the important role that such phenomena play in failure and fracture mechanisms.

In 1982, Ball [5] formulated the phenomenon of void nucleation and growth as a class of
bifurcation problems in the context of nonlinear elasticity for the first time, which established
the basic theory for such problems. Thereafter, many significant results have been obtained.

For incompressible hyper-elastic materials, an explicit formula to determine the critical
dead load for the cavity formation was given by Ball [5]. Cavitated bifurcation problems for
spheres composed of isotropic hyper-elastic materials of power-law type, the anisotropic neo-
Hookean material, the isotropic Valanis-Landel material and the transversely isotropic Ogden
material have been investigated by Chou-Wang and Horgan [6], Polignone and Horgan [7],
Ren and Cheng [8, 9], respectively. But it has been shown that cavitation can appear only
in the case of finite strains (see [10]). Further references may be found in [11, 12]. See the
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review article by Polignone and Horgan [13] for a comprehensive review of results up to 1995
for both incompressible and compressible materials.

However, for compressible hyper-elastic materials, the study of cavitated bifurcation is
more difficult due to the inherent nonlinearity of the problems. Ball [5] gave radially symmet-
ric solutions of n-dimensional boundary-value problems for the displacement and analyzed
the existence and stability of bifurcation solutions for compressible hyper-elastic materials. In
1986, Horgan and Abeyaratne [14] carried out the analyses on growth of pre-existing micro-
voids for the Blatz-Ko material. Thereafter, Biwa et al. [15] studied the effect of constitutive
parameters on the formation of a spherical void in a class of compressible nonlinear elastic
materials. See the review article [13] for details. Exact solutions for cavitated bifurcation
for the generalized Varga material, the generalized Carroll material, the modified Blatz-Ko
material and a class of compressible hyper-elastic materials were presented by Horgan [16],
Murphy and Biwa [17], Shang and Cheng [18, 19]. Recently, Ren and Cheng [20] studied
void nucleation and growth for composite compressible hyper-elastic materials. Kakavas [21]
studied the influence of cavitation on the stress-strain fields of the compressible Blatz-Ko
material in the case of finite deformations. Further references are [22–24].

As is well known, the constitutive law of a hyper-elastic material may be described com-
pletely by its strain-energy function. In 1955, Ericksen [25] proved an important result: the
only deformations that are controllable for compressible isotropic materials are homogeneous
deformation fields. Later, Rivlin [26], Varga [27] and Ogden [28] proposed several important
models of strain-energy functions. In 1988, Carroll [29] introduced three classes of com-
pressible isotropic hyper-elastic materials, which are expressed as functions of the principal
invariants of the strain tensor, and presented the solutions for spheres composed of these
materials in the case of finite strains. Thereafter, Murphy and Biwa [17] extended the strain-
energy functions and obtained a class of generalized Carroll materials. Hill and Arrigo [30]
proposed a modified Varga strain-energy function involving the reciprocals of the principal
stretches, in 1995. They also derived new families of exact solutions, for plane and axially
symmetric deformations by using transformation and reduced-equation methods in [30–32].
In 2001, Shang and Cheng [19] presented a linear approximated strain-energy function that
was expressed as a function of another set of invariants of the strain tensor.

The purpose of this paper is to examine in detail spherical cavitated bifurcation problems
for transversely isotropic incompressible hyper-elastic materials a compressible hyper-elastic
materials. In Section 2, we formulate mathematical models for radially symmetric deform-
ation problems for a solid sphere composed of a class of transversely isotropic incompress-
ible hyper-elastic materials under a prescribed uniform surface dead load, and for a solid
sphere composed of a class of compressible hyper-elastic materials under a prescribed surface
displacement, respectively. In Section 3, for the transversely isotropic incompressible hyper-
elastic sphere, a cavitated bifurcation equation, which describes cavity formation and growth
in the interior of the sphere, is obtained. Some qualitative properties of the solutions of the
cavitated bifurcation equation are discussed in detail in the different regions partitioned by ma-
terial parameters indicating the degree of radial anisotropy. It is shown, by use of singularity
theory, that the dimensionless cavitated bifurcation equation is equivalent to the normal forms
with single-sided constraint conditions at the critical point. Stability and catastrophe of the
solutions of the cavitated bifurcation equation are discussed by using the minimal potential-
energy principle. At the end of this section, we point out that the phenomena of catastrophe
and concentration of stresses occurring subsequent to cavitation coincide with the physical
behavior for hyper-elastic materials. In Section 4, a group of parameter-type solutions for the
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cavitated deformation and the expression of critical stretch are obtained for the compressible
hyper-elastic sphere under a prescribed surface displacement. In contrast to the critical radial
stretch found by Shang and Cheng [19] for the occurrence of a cavity in the interior of the
hyper-elastic sphere, the critical radial stretch associated with the strain-energy function given
in this paper is smaller than that in [19] for the same Poisson ratio. Stability of the solutions is
discussed as the prescribed stretch exceeds its critical value. With the appearance of a cavity,
an interesting feature of the radial deformation near the deformed cavity wall is the transition
from extension into compression.

2. Formulation

2.1. BASIC GOVERNING EQUATIONS

Consider the radially symmetric deformation of a solid here with radius A. Assume that the
sphere is composed of a homogeneous hyper-elastic material. It is subjected to a prescribed
uniform dead load p0 > 0 or a prescribed uniform radial stretch λ, (λ > 1) on its surface.
In the spherical coordinate system, the occupied region of the undeformed solid sphere is
denoted by

D0 = {(R,�,�)|0 ≤ R < A, 0 < � ≤ 2π, 0 ≤ � ≤ π} .

The deformation is assumed to be radially symmetric; thus the deformed configuration is
denoted by

D = {(r, θ, φ)|r = r(R), θ = �,φ = �, 0 < R ≤ A, r(0+) ≥ 0} (1)

where r = r(R) ≥ 0 is an undetermined function. If r(0+) = 0, the sphere remains solid,
while if r(0+) > 0, a spherical cavity with radius r(0+) forms at the center of the sphere.
In this case, the cavity surface is assumed to be traction-free. From the radially symmetric
deformation (1), the principal values of the strain tensor are given by

λ1 = ṙ(R), λ2 = λ3 = r(R)/R, (2)

where ṙ denotes the derivative with respect to R. Assuming that λ1λ2λ3 > 0 on 0 < R ≤ A,
from (1), we have

λ1 = ṙ(R) > 0, 0 < R ≤ A. (3)

Thus, from r(0+) ≥ 0, we deduce that r(R) > 0 on 0 < R ≤ A.

2.1.1. Incompressible hyper-elastic sphere
The incompressibility condition requires that λ1λ2λ3 = 1, with (2), so we have ṙ(R) =
R2/r2(R) and

r(R) = (R3 + c3)1/3. (4)

Here, the Cauchy stresses in terms of the strain-energy function W(λ1, λ2, λ3) are given by

τrr(R) = λ1
∂W

∂λ1
− p(R), τθθ (R) = τφφ(R) = λ2

∂W

∂λ2
− p(R), (5)
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where p(R) is an unknown hydrostatic pressure associated with the incompressibility condi-
tion. At the center of the sphere, we have the condition

r(0+)τrr (0+) = 0. (6)

Equation (6) means that, if no cavity occurs, r(0+) = 0, if a cavity forms at the center of the
sphere, r(0+) > 0, hence, we have τrr (0+) = 0.

Since the surface of the sphere is subjected to a prescribed uniform radial tensile dead load
p0 > 0, the surface condition requires that

τrr(A) = p0

[
A

r(A)

]2

. (7)

2.1.2. Compressible hyper-elastic sphere
The Cauchy stresses in terms of the strain- energy function W(λ1, λ2, λ3) are given by

τrr(R) = 1

λ2λ3

∂W

∂λ1
, τθθ (R) = τφφ(R) = 1

λ1λ2

∂W

∂λ3
= 1

λ1λ3

∂W

∂λ2
. (8)

In this case, the condition at the center of the sphere is the same as (6). Since the surface of
sphere is now subjected to a prescribed uniform radial stretch λ, the surface condition is given
by

r(A) = λA, (λ ≥ 1). (9)

The equilibrium equation for spherically symmetric deformation, in the absence of body
forces, becomes

τ̇rr(R) + 2
ṙ(R)

r(R)
(τrr (R) − τθθ (R)) = 0, (10)

where τrr and τθθ are given by (5) for the incompressible material, and by (8) for the com-
pressible material.

2.2. STRAIN-ENERGY FUNCTIONS

As is well known, the response of an isotropic hyper-elastic material is described completely
by its strain-energy function

W = W(λ1, λ2, λ3), (11)

where λ1, λ2, λ3 are the principal values of the strain tensor and W(λ1, λ2, λ3) are symmetric
functions of λ1, λ2 and λ3. The strain-energy function can also be written as

W = W̃(j1, j2, j3), (12)

where j1, j2 and j3 are the invariants of the stretch tensor and they are given by

j1 = λ1 + λ2 + λ3, j2 = 1

λ1
+ 1

λ2
+ 1

λ3
, j3 = λ1λ2λ3. (13)

Since W̃(j1, j2, j3) is a linear function with respect to j1, j2 and j3, the strain-energy function
may be denoted by
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W = W̃(j1, j2, j3) = c1(j1 − 3) + c2(j2 − 3) + (c2 − c1)(j3 − 1). (14)

To guarantee that the isotropic hyper-elastic materials represented by the strain-energy func-
tion (14) linearize properly to the classic linear theory (cf. Ogden [33, pp. 349]), it is easy to

obtain c1 = µ
1 − 3ν

1 − 2ν
, c2 = µ

1 − ν

1 − 2ν
, where µ is the shear modulus and ν is the Poisson ratio

in the state of infinitesimal deformations. In [19], Shang and Cheng studied the cavitated
bifurcation problem for this class of materials. When the material is incompressible, i.e.,
j3 = λ1λ2λ3 = 1, the strain-energy function may be given as

W = W̃(j1, j2, 1) = µ
[
a(j1 − 3) + b(j2 − 3)

]
, (15)

where µa and µb are two material constants such that a + b = 2. Hill and Arrigo [30]
called (15) the modified Varga strain-energy function, and they also derived new families of
exact solutions for plane and axially symmetric deformations by using the transformation and
reduced equation methods [30–32].

In this paper, we use these, with λ1, λ2 and λ3 given by (2), to discuss the spherical
symmetric deformation problems for solid spheres composed of two kinds of hyper-elastic
materials, which are incompressible and compressible, respectively.

For incompressible materials, we assume that the strain-energy function is given by

W(λ1, λ2, λ3)=µ

[
a(λ1+λ2+λ3 −3)+b

(
1

λ1
+ 1

λ2
+ 1

λ3
−3

)
+α(λ1 −1)2 +β(λ1 −1)3

]
, (16)

where α, β ≥ 0 are the dimensionless material parameters, and they may be regarded as
measures of the degree of anisotropy of the material about the radial direction. In particular,
when α = β = 0, the corresponding hyper-elastic material is isotropic, so (16) reduces to
(15). If at least one of α, β is nonzero, the hyper-elastic material is called transversely isotropic
about the radial direction. Polignone and Horgan [7] presented perhaps the first paper idealing
with a cavitation-formation problem for this kind of material. In their work, the strain-energy
functions of anisotropic materials were discussed in detail. In the present paper, we are mainly
concerned with the effect of the material parameters, i.e., α and β, on cavity formation and
growth for spheres composed of the transversely isotropic hyper-elastic materials (16).

For compressible materials, assume that the strain-energy function has the form

W = W̃(j1, j2, j3) = c1(j1 − 3) + c2(ln j2 − ln 3) + c3(j3 − 1). (17)

It is easy to show that the strain-energy function (17) satisfies certain constitutive inequalities
imposed to ensure that the physical behavior of the material is realistic. Further, we have (cf.
Ogden [33, pp. 349])

c1 = µ
2(2 − 7ν)

5(1 − 2ν)
, c2 = µ

18(1 − ν)

5(1 − 2ν)
, c3 = µ

2(1 + 4ν)

5(1 − 2ν)
. (18)

Obviously, the strain-energy function (17) has a unique local minimum (3,3,1), corresponding
to the natural state of the material, and the minimum is always nonnegative if c1, c2, c3 are
positive, so we must assume that µ > 0, 0 < ν < 2/7.

Thus, the mathematical model of the spherical symmetric deformation for a transversely
isotropic incompressible hyper-elastic solid sphere, subjected to a uniform tensile dead load
p0 > 0 on its surface, consists of the Equation (4), (5), (10), (16), and the boundary conditions
(6), (7). The mathematical model for a compressible hyper-elastic solid sphere, subjected to
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a prescribed uniform radial stretch λ > 1 on its surface, is formed by the Equations (2), (8),
(10), (17) and the boundary conditions (6), (9).

3. Cavitated bifurcation for incompressible hyper-elastic sphere

First, on substituting (4) in (2), this yields λ1 =
(

1 + c3

R3

)−2/3

, λ2 = λ3 =
(

1 + c3

R3

)1/3

. For

convenience of calculation, we introduce the notation ω = ω(R, c) = λ2 = λ3, ω−2(R, c) =
λ1, and thus the strain-energy function (16) and the corresponding Cauchy stresses can be
written as


(ω) = W
(
ω−2, ω, ω

)
= µ

[
a

(
ω−2 + 2ω − 3

) + b
(
2ω−1 + ω2 − 3

) + α
(
ω−2 − 1

)2 + β
(
ω−2 − 1

)3
]
,

(19)

τrr(R) = µ
[
aω−2 − bω2 + 2αω−2(ω−2 − 1) + 3βω−2(ω−2 − 1)2] − p(R), (20a)

τθθ (R) = τθθ (R) = µ(aω − bω−1) − p(R). (20b)

On substituting (20a,b) in (10) and integrating the obtained equation from 0 to R, we have

τrr(R) − τrr (0+) = −2µK(c,R), (21)

where

K(c,R) =
∫ R

0

[
a(ω−2−ω) + b(ω−1−ω2)+2αω−2(ω−2−1)+3βω−2(ω−2−1)2

]
ω3

dξ

ξ
.

In the above integration, ω denotes ω(ξ, c) = (1 + c3/ξ 3)1/3. On substituting (20a) in (21),
we have

p(R)=µ
[
aω−2−bω2+2αω−2(ω−2−1)+3βω−2(ω−2−1)2]+2µK(c,R) − τrr(0+), (22)

where r(0+) = c and τrr (0+) are determined from the boundary conditions (6) and (7),
moreover,

τrr(0+) = p0

(
A(

A3 + c3
)1/3

)2

+ 2µK(c,A), (23)

cp0 = −2µc

(
1 + c3

A3

)2/3

K(c,A). (24)

For the prescribed dead load p0 > 0, if c ≥ 0 is a solution of (24), then τrr (0+) can be
obtained by (23). For any prescribed dead load p0 > 0, c = 0 is a solution of (24) and
τrr(0+) is given by (23), so r(R) = R and p(R) = −p0 are the trivial solutions of the
spherical symmetric deformation for an incompressible hyper-elastic sphere. If c > 0 is a
solution of (24), we have τrr (0+) = 0 from (24), then (4) and (22) are the non trivial solutions
of the problem.

We now discuss the existent conditions and the qualitative properties of the nonzero solu-
tions for (24). In what follows, it is convenient to introduce the following dimensionless
quantities:
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p0

µ
= P,

c

A
= x. (25)

For K(c,A) in (24), replacing ξ in K(c,A) by ω = ω(ξ, c) = (1 + c3/ξ 3)1/3, we have

K(c,A)=
∫ ∞

(1+c3/A3)1/3

[
a(ω−3−1)+b(ω−2−ω)+2αω−3(ω−2−1)+3βω−3(ω−2−1))2

]
ω3 − 1

dω. (26)

It is not difficult to rewrite (24) as

L(P, x, α, β) = x [l1(x) + αl2(x) + βl3(x) − P ] = 0, (27)

where

l1(x) = 2(1 + x3)2/3

[
1

2
a(1 + x3)−2/3 + b(1 + x3)−1/3

]
, (28a)

l2(x) = 4(1 + x3)2/3

{
− 5π

6
√

3
+ (1 + x3)−1/3 − 1

2
(1 + x3)−2/3 + 1

4
(1 + x3)−4/3+

1√
3

[
arctan

(
1 + 2(1 + x3)1/3

√
3

)
+ arctan

( √
3(1 + x3)1/3

2 + (1 + x3)1/3

)]}
,

(28b)

l3(x) = 6(1 + x3)2/3

{
4π

3
√

3
− 2(1 + x3)−1/3 + 1

2
(1 + x3)−2/3 + 1

3
(1 + x3)−1

−1

2
(1 + x3)−4/3 + 1

6
(1 + x3)−2 − 1√

3

[
2 arctan

(
1 + 2(1 + x3)1/3

√
3

)
+

arctan

( √
3(1 + x3)1/3

2 + (1 + x3)1/3

)]
+ 1

2
ln

(1 + x3)2/3 + (1 + x3)1/3 + 1

(1 + x3)2/3

}
.

(28c)

Obviously, all li (x) (i = 1, 2, 3) are sufficient smooth functions on [0,∞).
Equation (27) gives an exact relation between the dimensionless surface dead load P and

the cavity radius x. We call (27) the cavitated bifurcation equation.

3.1. QUALITATIVE PROPERTIES OF CAVITATED BIFURCATION EQUATION (27)

3.1.1. Main results
It is easy to see that x ≡ 0 is a solution of (27) for arbitrarily prescribed P > 0. This solution
corresponds to the homogeneous state of deformation of the sphere, namely, r(R) = R and
p(R) = −p0. So we call x ≡ 0 the trivial solution of (27). In order to prove that there is a
unique bifurcation point on the trivial solution branch, we consider Equation Lx(0, P, α, β) =
0. Obviously, it has a unique solution

Pcr = l1(0) + αl2(0) + βl3(0) = a + 2b +
(

3 − 4
√

3π

9

)
α − (9 − √

3π − 3 log 3)β)

≈ a + 2b + 0·5816α − 0·2628β

(29)

From LxP (0, Pcr, α, β) = −1, we have that (0, Pcr, α, β) is the unique bifurcation point of
the trivial solution. Furthermore, it is easy to obtain
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Lxx(0, Pcr, α, β) = Lxxx(0, Pcr, α, β) = 0, (30a)

Lxxxx(0, Pcr, α, β) = 4
[
l′′′1 (0) + αl′′′2 (0) + βl′′′3 (0)

]
= 24

[
2

3
b + 2(15 − 4

√
3π)

27
α −

(
6 − 2

√
3π

3
− 2 log 3

)
β

]
≈ 24(0·6667b − 0·5012α − 0·1752β).

(30b)

Since we consider mainly the effect of the material parameters (i.e., α and β) on cavity
formation and growth for spheres composed of transversely isotropic hyper-elastic materials
(16), here we assume that a and b are two prescribed constants.

From the above analyses, we obtain the following results:
Conclusion 1 For any prescribed P > 0, there is a unique bifurcation point on the trivial
solution x ≡ 0, which corresponds to the critical dead load Pcr given by (29) as a cavity occurs
in the interior of the sphere. It is clear that the critical load of sphere is given by Pcr = a + 2b

when α = β = 0. It is not difficult to see that, when 0·5816α − 0·2628β > 0 (or < 0), the
cavitated bifurcation for the sphere composed of this class of materials occurs later (or earlier)
than that for the isotropic hyper-elastic material.
Conclusion 2 When Lxxxx = (0, Pcr, α, β) > 0 (or < 0), the nontrivial solution of (27)
bifurcates locally to the right (or to the left) from the trivial solution at the bifurcation point
(0, Pcr, α, β). In particular, as Lxxxx = (0, Pcr, α, β) < 0, there exists a secondary turning
bifurcation point on the nontrivial solution branch of (27) that bifurcates locally to the left.

In fact, from (30a,b), we see that Lx(x, P, α, β) < 0 for sufficient small x > 0. It is not
difficult to show that Lx(x, P, α, β) > 0 for sufficient large x. Thus, we may conclude that
there must exist a value xn such that Lx(xn, P, α, β) = 0, and the corresponding dead load
is written as Pn, that is to say, there is a secondary turning bifurcation point (xn, Pn) on the
nontrivial solution branch.

The foregoing results generalize those of Polignone and Horgan [7] who considered cav-
ity formation and growth for spheres composed of a one-parameter family of transversely
isotropic materials.

3.1.2. Equivalent normal forms
From (27), we know that L(0, Pcr, α, β) = 0; furthermore, we have Lp(0, Pcr, α, β) = 0,
LxP (0, Pcr, α, β) = −1 as well as (30a,b). In terms of the distinguished conditions for the
bifurcation equation in the singularity theory (cf. [34, Chapter 3]) and P > 0, x ≥ 0, we
obtain the following conclusion.
Conclusion 3 If l′′′1 (0) + αl′′′2 (0) + βl′′′3 (0) 	= 0, then L(x, P, α, β) is equivalent to the normal
forms ±x4 − δx with single-sided constraint conditions at the critical point (0, Pcr, α, β).

To study the effect of the material parameters α, β on the solutions of the cavitated bifurc-
ation equation, we divide the parameter plane α, β into four regions (See Figure 1) by the
following two straight lines

k1(α, β) =
(

3 − 4
√

3π

9

)
α − (9 − √

3π − 3 log 3)β = 0 (31a)

and

k2(α, β) = 2

3
b + 2(15 − 4

√
3π)

27
α −

(
6 − 2

√
3π

3
− 2 log 3

)
β = 0, (31b)
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where (31a) means that the critical dead load corresponding to the material (16) is smaller or
larger than that of the isotropic material, while (31b) determines the bifurcation direction of
the nontrivial solution of the cavitated bifurcation equation at the critical point. For conveni-
ence and certainty, in the following calculation, we take a = 1, b = 1. The four regions in the
parameter plane α, β are denoted by

�1 = {(α, β) : k1(α, β) > 0, k2(α, β) > 0, β ≥ 0} ; (32a)

�2 = {(α, β) : k1(α, β) < 0, k2(α, β) > 0, α ≥ 0} ; (32b)

�3 = {(α, β) : k1(α, β) < 0, k2(α, β) < 0, α ≥ 0} ; (32c)

�4 = {(α, β) : k1(α, β) > 0, k2(α, β) < 0, β ≥ 0} . (32d)

Thus, we have the following conclusion.
Conclusion 4 When the parameters (α, β) belong to �2 or �3 (�1 or �4), the critical load
associated with the strain-energy function (16) is smaller (larger) than that associated with
α = β = 0 in (16); when the parameters (α, β) belong to �3 or �4 (�1 or �2), the nontrivial
solution of the cavitated bifurcation equation bifurcates locally to the left (right) at the critical
point, and there exists a secondary turning bifurcation point on the nontrivial solution when
the parameters belong to �3 or �4.
Remark. From (31b), we see that, in Figure 1, when the value of b increases from 0 to 2, the
regions �1 and �2 increase from the origin to the maximum regions, and the boundary-line
as b = 2 is the dot line shown in Figure 1. In fact, there is also a line, a + 2b + 0·5816α −
0·2628β = 0, in Figure 1. Since we only consider small parameters (α, β) and this line is far
from the regions we partitioned, this line is not considered.

3.1.3. Numerical examples
Next we show the cavity formulation and growth in the interior of the sphere by several
numerical examples when the material parameters (α, β) be long to different regions.

(1)As α = 1, β = 0·5 in region �1, we obtain the critical load is Pcr = 3·4502.
(2) As α = 0·5, β = 1·5 in region �2, we obtain Pcr = 2·8966.
(3) As α = 1, β = 3 in region �3, we obtain Pcr = 2·7932 and the coordinates of the

secondary turning bifurcation point is (xn, Pn) = (2·7696, 0·5248).
(4) As α = 2, β = 1 in region �4, we obtain Pcr = 3·9004 and (xn, Pn) = (3·8191, 0·7445).
Curves of the relation between the dimensionless surface load and the cavity radius in the

four regions are shown in Figures 2–5.

3.2. STABILITY AND CATASTROPHE OF SOLUTIONS

To examine the stability of the solutions of Equation (27), we now carry out an energy ana-
lysis. For the incompressible hyper-elastic material (16), the total energy corresponding to any
equilibrium configuration of the sphere is given by

E(C) = 4π

∫ A

0
WR2dR − 4πA2p0[r(A) − A]

= 4πc3
∫ ∞

(1+c3/A3)1/3

ω2
(ω)

(ω3 − 1)2
dω − 4πA2p0

[
(A3 + c3)1/3 − A

]
,

(33)
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where 
(ω) is given by (19). The first term in (33) is the total strain energy, and the second
term is the work done by the tensile dead load. The dimensionless form of (33) is

�(x) = E(x)

(4/3)πA3µ
= ψ(x) + Pγ (x), (34)

where

ψ(x) = 3x3

µ

∫ ∞

(1+x3)1/3

ω2
(ω)

(ω3 − 1)2
dω, γ (x) = −3

[
(1 + x3)1/3 − 1

]
.

For the trivial solution x = 0, from (34), it is not difficult to obtain

�(0) = �′(0) = �′′(0) = 0, �′′′(0) = 6(Pcr − P), (35)

where �′ denotes the derivative with respect to x. The trivial solution minimizes �(0) among
all possible (spherical symmetric) configurations as P < Pcr thus it is stable. But for P >

Pcr the trivial solution provides a local maximum for �(0) among all possible (spherical
symmetric) configurations, thus it is unstable.

For the nontrivial solution, we have a Taylor expansion of (34) at x = 0as follows:

�(x) = −1

2
(0·6667 − 0·5012α − 0·1752β)x6 + O(x9). (36)

From Conclusion 1, we know that, for P > Pcr, the nontrivial solution of the cavitated bifurc-
ation equation (27) will bifurcate at the critical point x = 0, P = Pc from the trivial solution
x ≡ 0. Equation (36) shows the following: if the nontrivial solution of (27) bifurcates to the
left (namely, the parameters (α, β) belong to �3 or �4) near x = 0, P = Pcr, the total energy
takes the local maximum, thus the nontrivial solution is unstable. Similarly, if the nontrivial
solution of (27) bifurcates to the right (namely, the parameters (α, β) belong to �1 or �2) near
x = 0, P = Pcr, the total energy assumes a local minimum, and the nontrivial solution here
is stable. Curves for the relation between the energy and the cavity radius in �2 and �4 are
shown in Figures 6 and 7, respectively. The energy curves in �1 and �3 are similar to those
of �2 and �4, respectively.

In summary, when the parameters (α, β) belong to �1 or �2, the trivial solution of (27)
is stable for P < Pcr and it is unstable for P > Pcr. After a cavity forms, the nontrivial
solution, which increases monotonically, is stable. When the parameters (α, β) belong to �3

or �4, the stability of the solutions changes since there is a secondary turning point on the
nontrivial solution branch, as shown in Figure 8. The number of solutions, corresponding to
the number of equilibrium states, here depends on the values of P in the following way: when
0 < P < Pn, there is only one stable trivial solution x ≡ 0; when Pn < P < Pcr, there
are exactly three solutions, among which one stable trivial solution x ≡ 0 and two nontrivial
solutions x1 and x2 with 0 < x1 < xn < x2. It is easy to show that x1 maximizes the total
energy and hence it is unstable, x2 minimizes the total energy and hence it is stable; when
P > Pcr, there are exactly two solutions, namely, one unstable trivial solution x ≡ 0 and
one stable nontrivial solution x > xc. However, there are two stable equilibrium solutions
as Pn < P < Pcr; they correspond to the trivial solution x ≡ 0 and the nontrivial solution
x2, respectively. To illustrate which solution does correspond to the actual stable equilibrium
state, we have to solve; equation �(x) = 0. It is not difficult to obtain a positive value xt

corresponding to Pt ; see Figure 7. Further, as Pn < P < Pt , the trivial solution provides
a local minimum for the total energy, and thus it is the actual stable equilibrium state; as
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Figure 1. Regions partitioned in parameter plane. Figure 2. Solution curves of Equation (27) and their
stabilities in �1.

Figure 3. Solution curves of Equation (27) and their
stabilities in �2.

Figure 4. Solution curves of Equation (27) and their
stabilities in �3.

Pt < P < Pcr, the nontrivial solution here provides a local minimum for the total energy, and
it is the actual stable equilibrium state.

In �3 or �4, the solutions of the cavitated bifurcation equation (27) can also give rise to
catastrophe phenomena. As shown in Figure 8, if the surface tensile dead load P changes
quasi-statically from small to bigger, then for P < Pt , no cavity occurs in the interior of
the sphere; but when P > Pt , the equilibrium state of the sphere changes suddenly, namely, a
bigger cavity occurs. In contrast, if the dead load P changes quasi-statically from big to small,
the cavity radius reduces suddenly to zero only as P < Pt .

Note: In Figures 2–5, ‘s’, ‘u’, ‘as’, ‘au’ denote ‘stable’, ‘unstable’, ‘actual stable’, ‘actual
unstable’, respectively.
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Figure 5. Solution curves of Equation (27) and their
stabilities in �4.

Figure 6. Energy curve in �1 and �2.

Figure 7. Energy curve in �3 and �4. Figure 8. Sketch map for stability and catastrophe of
solutions in �3 and �4.

3.3. STRESS CONCENTRATION AND CATASTROPHE

On substituting (22) and (26) in (20a, b), we have

τ̂rr(ρ) = P
(
1 + x3

)−2/3 + 2K(x) − 2K(x, ρ),

τ̂θθ (ρ) = τ̂φφ(ρ) = ω(ρ, x) − ω−1(ρ, x) − ω−2(ρ, x) + ω2(ρ, x)

−2αω−2(ρ, x)(ω−2(ρ, x) − 1) − 3βω−2(ρ, x)(ω−2(ρ, x) − 1)2 + τ̂rr (ρ),

where τ̂rr (ρ) = τrr (ρ)/µ, τ̂θθ (ρ)/µ, ρ = R/A.
In �1 or �2, from the above analyses, one has that, for P ≤ Pcr, no cavity forms in the

interior of the sphere; Equation (27) has only the trivial solution, namely, x ≡ 0, so we have

τ̂rr(ρ) = τ̂θθ (ρ) = τ̂φφ(ρ) = P.
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Figure 9. Stress jumping at cavity surface. Figure 10. Stress distribution curves for α = 1, β =
0·5.

However, for the prescribed P > Pcr, there is a unique stable nontrivial solution of (27), that
is to say, a cavity forms at the center of the sphere. From (24), we obtain

τ̂rr(ρ) = −2K(x, ρ),

τ̂θθ (ρ) = τ̂φφ(ρ) = ω(ρ, x) − ω−1(ρ, x) − ω−2(ρ, x) + ω2(ρ, x)

−2αω−2(ρ, x)(ω−2(ρ, x) − 1) − 3βω−2(ρ, x)(ω−2(ρ, x) − 1)2 − 2K(x, ρ).

If a cavity forms in the interior of the sphere, the stresses near the cavity R = 0+ are given
by τ̂rr (0+) = 0 and τ̂θθ (0+) = τ̂φφ(0+) = +∞, respectively.

The discontinuity of the stresses, τ̂rr (0+) and τ̂θθ (0+), for the prescribed P is shown in
Figure 9. For different prescribed values of P , the distributions of the radial and circumfer-
ential stresses are shown in Figure 10. From Figure 10, one can see that, for P < Pcr, both
the radial stress τ̂rr (ρ) and the circumferential stress τ̂θθ (ρ) are homogeneous and increasing
with P . However, as P = Pcr, the stresses undergo an obvious catastrophic transition from the
homogeneous distribution to the non-homogeneous distribution. If P > Pcr, the value of the
circumferential stress near the cavity is infinite, but it decreases rapidly as ρ increases gradu-
ally, and there obviously exists a concentration phenomenon for the circumferential stress near
the cavity. This implies that the stress concentration is a local phenomenon; however, this is
just the reason for the sudden appearance of the cavity and its subsequent rapid growth, as one
would expect on physical grounds.

For �3 or �4, the discussion on the radial and circumferential stresses are similar. Further,
Polignone and Horgan [7, 12, 13], Ren and Cheng [8, 9] have also discussed this class of
phenomena.
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4. Cavitated bifurcation for compressible hyper-elastic sphere

4.1. SOLUTIONS AND THEIR QUALITATIVE PROPERTIES

On substituting (2) and (8) in (10), the equilibrium equation for the radial deformation function
r(R) is denoted by

∂2W

∂λ2
1

r̈(R) + 2

R

[
∂2W

∂λ1∂λ2

(
ṙ(R) − r(R)

R

)
+

(
∂W

∂λ1
− ∂W

∂λ2

)]
= 0, (37)

where the strain-energy function W is given by (17).
Obviously, for arbitrary prescribed λ > 1, one solution of (37), called the ‘homogeneous

solution’ satisfying the boundary conditions (6) and (9), is denoted by

r(R) = λR, (38)

which corresponds to the homogeneous radial displacement u(R) = (λ − 1)R. Thus (38) is
called the trivial solution.

In order to obtain nontrivial solutions of the problem, let

ε = ε(R) = λ1

λ2
= R

r(R)
ṙ(R), 0 < R ≤ A. (39)

It is easy to see that, if r(0+) = 0, we have ε(0+) = lim
R→0+

R

r(R)
ṙ(R) = 1, while if r(0+) >

0, then ε(0+) = lim
R→0+

R

r(R)
ṙ(R) = 0. On substituting (39) and the strain-energy function

(17) in (37), we obtain the equivalent equations

ṙ(R) = r(R)

R
ε(R), ε̇(R) = 1

R

ε(1 − ε)(1 + 2ε)(3 + 2ε)

1 + 4ε
. (40-41)

From ε(R) > 0, we see that the solutions of Equation (41) only have the following three
cases: (1) ε(R) ≡ 1; (2) ε(R) > 1; (3) 0 < ε(R) < 1. We now discuss these in detail.

(1) If ε(R) ≡ 1 (R ∈ (0, A)), then we obtain r(R) = cR from (40), where c is an arbitrary
positive constant. It is clear that it corresponds to the homogeneous solution (38) from the
condition (9).

(2) If ε(R) > 1 (R ∈ (0, A)), then (41) shows that ε̇(R) < 0, namely, ε decreases
monotonously with R. If r(0+) > 0, we have ε(0+) = 0 from the above analysis; thus
we have ε(R) < 0. However, this leads to ṙ(R) < 0, which contradicts with the condition (3).
If r(0+) = 0, here r(R) = λR, we have ε(R) ≡ 1; this contradicts with our hypothesis. Thus
this case is impossible.

(3) If 0 < ε(R) < 1 (R ∈ (0, A)), then (41) shows that ε̇(R) > 0, namely ε increases
monotonously with R. Thus we have ε(0+) = 0. Let ε(A) = ε0, here ε0 is an undetermined
constant satisfying the condition 0 < ε0 < 1. The inverse function of ε(R) is denoted by
R = R(ε), (ε ∈ (0, ε0]). It is obvious that R(ε0) = A. Integration of Equation (41) from ε to
ε0 yields

R(ε, ε0) = A

(
ε

ε0

)1/3 (
1 − ε0

1 − ε

)1/3 (
1 + 2ε

1 + 2ε0

)1/3 (
3 + 2ε0

3 + 2ε

)1/3

. (42)
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Let r̂(ε, ε0, λ) = r(R(ε, ε0), λ). On substituting (42) in (40) and integrating the obtained
formula from ε to ε0, we have

r̂(ε, ε0, λ) = λA

(
1 − ε0

1 − ε

)1/3 (
1 + 2ε

1 + 2ε0

)1/6 (
3 + 2ε0

3 + 2ε

)1/2

. (43)

Further, it is easy to obtain that the principal stretches and the principal stresses are as
follows:

λ2(ε, ε0, λ) = R(ε, ε0)

r̂(ε, ε0, λ)
= λ

(ε0

ε

)1/3
(

1 + 2ε0

1 + 2ε

)1/2 (
3 + 2ε

3 + 2ε0

)5/6

, (44)

λ1(ε, ε1, 0, λ) = ελ2(ε, ε0, λ). (45)

τrr(ε, ε0, λ)=
[

c1

λ2

(
ε

ε0

)2/3 (
1+2ε

1+2ε0

) (
3+2ε0

3+2ε

)5/3

− c2

λ3ε0

(1+2ε)1/2

(1+2ε0)3/2

(
3+2ε0

3+2ε

)5/2

+c3

]
,

(46)

τθθ (ε, ε0, λ)=
[

c1

λ2ε

(
ε

ε0

)2/3 (
1+2ε

1+2ε0

) (
3+2ε0

3+2ε

)5/3

− c2ε

λ3ε0

(1+2ε)1/2

(1+2ε0)3/2

(
3+2ε0

3+2ε

)5/2

+c3

]
.

(47)

Equations (43–47) give the parameter-type solutions for the radial deformation, the prin-
cipal stretches and the principal stresses. From condition (6) at the center of the sphere,
namely, ε = 0, we have

ητrr(0, ε0, λ) = 0, (48)

here

η = r̂(0, ε0, λ) = λA(1 − ε0)
1/3(1 + 2ε0)

1/6

(
3

3 + 2ε0

)1/2

, (49)

τrr(0, ε0, λ) =
[
− c2

λ3ε0

1

(1 + 2ε0)3/2

(
3 + 2ε0

3

)5/2

+ c3

]
. (50)

The formulation (48) gives a relation between the stretch λ and the cavity radius η. So we
call (48) the cavitated bifurcation equation. From (49) we have that ε0 = 1 is the unique
solution of η = 0. Thus we have η = 0 ⇔ 1 − ε0 = 0. Further, (48) is equivalent to
�(ε0, λ) = (1 − ε0)τrr (ε0, λ) = 0. Let’s consider �ε0(1, λ) = 0. It is easy to obtain the
unique solution of this equation, namely,

λcr =
(

55/2c2

81c3

)1/3

=
(

55/2

9

1 − ν

1 + 4ν

)1/3

. (51)

It is not difficult to show that �ε0λ(1, λcr) 	= 0, thus we have that (R, λ) = (0, λcr) is a unique
bifurcation point on the homogeneous solution r(R) = λR.

When a cavity forms at the center of the sphere, i.e., λ > 0, from τrr (0+) = 0, we have
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λ3 = c2

c3ε0

1

(1 + 2ε0)3/2

(
3 + 2ε0

3

)5/2

. (52)

In summary, for arbitrarily prescribed λ > 1, r(R) = λR is a homogeneous solution of
(37), and there is a unique bifurcation point (0, λcr) on it, where the critical stretch λcr is
given by (51). When λ > λcr, a cavity forms in the interior of the sphere, (42), (43) and
(52) are the parameter-type cavitated bifurcation solutions of Equation (37) satisfying (6) and
(9) associated with the strain-energy function (17). For ε0 = 1, r(0+) = 0 is a solution of
Equation (48). When 0 < ε0 < 1, for any arbitrary prescribed λ > λcr, we can obtain a value
of ε0 from (52). Substituting this in (49), we can obtain a value of cavity radius. From (51),
one can see that the critical stretch λcr decreases monotonically with increasing the Poisson
ratio ν, where 0 < ν < 2/7. For different Poison ratios ν, curves for the cavity radius and the
stretch are shown in Figure 11. In contrast to the situation described in [19], the critical stretch
for the cavity formation for the strain energy function (17) in our paper is smaller than that in
[19] for the same Poisson ratio. In other words, cavitated bifurcation for the sphere composed
of this kind of hyper-elastic materials occurs earlier than for that in [19].

4.2. STABILITY OF SOLUTIONS

For λ > λcr, there are two solutions of Equation (37), namely, a homogeneous solution and a
cavitated bifurcation solution. We now examine their relative stabilities from the total potential
energy.

The total potential energy of the sphere subjected to a prescribed uniform radial displace-
ment on its surface is given by

E(λ) = 4π

∫ A

0
R2WdR = 4π

3
A3

{
W(λ1, λ2, λ3) − (λ1 − λ2)

∂W

∂λ1
(λ1, λ2, λ3)

}
. (53)

For the homogeneous solution, we have ṙ(A) = λ; and for the cavitated bifurcation solution,
we have ṙ(A) = λε0. Thus, the total potential energies of the sphere for the homogeneous
solution and the cavitated bifurcation solution are given by

Eh(λ) = 4πA3

3
W(λ, λ, λ) (54)

and

Ec(λ) = 4πA3

3

{
W(λε0, λ, λ) − λ(ε0 − 1)

∂W

∂λ1
(λε0, λ, λ)

}
, (55)

respectively.
Substituting (17) in (53) and (54) yields

Ec(λ) − Eh(λ) = 4πA3c2

3

[
log

1 + 2ε0

3ε0
− 1 − ε0

ε0(1 + 2ε0)

]
. (56)

Since 0 < ε0 < 1, it is easy to show that the right-hand side of (56) is negative, since Ec < Eh.
Consequently, the energy of the sphere for the cavitated bifurcation solution is strictly less

than that of the homogeneous solution for the same λ. Thus, the cavitated bifurcation solution
is stable.

According to the formula of radial displacement u(R, λ) = r(R, λ) − R, for different λ,
the curves for the radial displacement are shown in Figure 12, where r and R are given by (42)
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Figure 11. Bifurcation curves of cavity radius for
different ν.

Figure 12. Radial displacement curves for different
λ.

and (43), respectively. From Figure 12 we conclude: when λ < λcr, the deformation state of
the sphere is homogeneous, and no jumping of the radial displacement occurs until the critical
state λ = λcr; but when λ > λcr, the radial displacement may jump and the homogeneous
state bifurcates continuously into the cavitated deformation state. Furthermore, the transition
for the slope of radial displacement is not continuous, as shown in Figure 12, the cavitated
displacement u(R) has positive and negative slopes in the different domains of R. The positive
slope of u(R) corresponds to extension while the negative slope corresponds to compression.
That is to say: when λ < λcr, namely, before the cavity forms, the deformation of the whole
sphere is extension, but when λ > λcr, namely, after the cavity forms, the deformation near
the cavity becomes compressive. This is obviously different from that of the homogeneous
deformation.

4.3. STRESS CONCENTRATION AND CATASTROPHE

From the above analyses, one can see that r(R) = λR as λ < λcr and we have τrr (R) =
τθθ (R) = τφφ(R) = c1

λ2
− c2

3λ3
+ c3. And as λ ≥ λcr, we can calculate exactly the stresses

from (46) and (47). Since the analyses for the stresses are similar to that of Section 3.3, we
only carry out the numerical calculations. The jumping figures of the stresses at the surface of
the cavity and the stress distribution curves are shown in Figures 13 and 14, respectively.

One has to point out that, from Figure 13, as the prescribed stretch λ ≥ λcr, the circum-
ferential stress is finite for the material given in [19], but for the material given by (17), the
circumferential stress is infinite.

5. Conclusions

In this paper, we have considered cavitated bifurcation problems for spheres composed of a
transversely isotropic incompressible hyper-elastic material and a compressible hyper-elastic
material, respectively, and have reached the following conclusions.
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Figure 13. Stress jumping at the cavity surface. Figure 14. Stress distribution and concentration.

(1) For the transversely isotropic incompressible hyper-elastic solid sphere associated with
the strain-energy function (16), we have

(1.1) The cavitated bifurcation can occur for this class of incompressible hyper-elastic
spheres as the prescribed uniform dead load exceeds the critical dead load. When the para-
meters (α, β) belong to �2 or �3(�1 or �4), the cavitated bifurcation for the sphere composed
of this class of materials occurs earlier (later) than that for the isotropic material (i.e., (16) with
α = β = 0).

(1.2) When the parameters (α, β) belong to �1 or �2 (�3 or �4), the nontrivial solution
of the cavitated bifurcation equation bifurcates locally to the right (to the left) of the trivial
solution at the bifurcation point (0, Pcr, α, β), and there exists a secondary turning bifurcation
point on the nontrivial solution branch as the parameters (α, β) belong to �3 or �4.

(1.3) If l′′′1 (0)+αl′′′2 (0)+βl′′′3 (0) 	= 0, then L(x, P, α, β) is equivalent to the normal forms
±x4 − δx with single-sided constraint conditions at the critical point (0, Pcr, α, β).

We point out that, according to singularity theory, if some higher-order radial terms are
introduced into the strain-energy function (16), the qualitative properties of the solutions of
the cavitated bifurcation equation are also similar.

(2) For the isotropic compressible hyper-elastic sphere associated with the strain-energy
function (17), we have the following conclusions:

(2.1) The cavitated bifurcation can occur for this class of compressible hyper-elastic spheres
as the prescribed stretch exceeds the critical stretch. A group of parameter-type cavitated
bifurcation solutions and the expression of critical stretch are obtained. The critical stretch λcr,
given by (51), decreases monotonously with increasing Poisson ratio ν, where 0 < ν < 2/7.

(2.2) The cavitated bifurcation for the hyper-elastic sphere associated with the strain-
energy function (17) occurs earlier than that in [19] for the same Poisson ratio. In other words,
the cavitated bifurcation for the sphere composed of this kind of hyper-elastic materials occurs
earlier than that in [19].
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(2.3) When λ < λcr, namely before the cavity forms, the deformation of the whole sphere
is an extension, but when λ > λcr, namely, after the cavity forms, the deformation near the
cavity becomes compressive.
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